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So what is the shape of the universe? We know the shape of the Earth - we
can (in theory) go out into space, look back on Earth and see it is nearly a
sphere. This extrinsic way of classifying shapes is intuitive to us, because
we use it all the time...but we can’t do this when we are thinking about the
universe, because we can’t go ‘outside’ it. It could be flat or spherical...or
maybe a doughnut shape? Or a pear shape? Maybe it’s like a Klein bottle,
or something even more exotic? After all, if we were stuck on the surface
of these shapes, and these shapes were big enough, we would not be able
to tell the difference because all we would see is ‘flat’ land.

Fig. 1: A 2-torus, a Klein bottle, and a 2-sphere. Note these are ‘hollow’; interior points are not
part of the objects. When we are on Earth we view our land as being flat, even though we know the
Earth is nearly spherical.

We will see how a study of geometry provides us with some tools to help
us answer this seemingly untouchable question.

Some geometric ideas

To extrinsically study shapes, we first put the shape into some Euclidean
(i.e. flat) space, and then we study its geometry. For example, we put
a circle into the 2-dimensional (x,y) plane, and from that we can find
out its circumference and area. The circle is a |-dimensional object: it
is completely described by how far along the curve we are from some
reference point we provide. By a similar argument, the sphere in Fig. |
is a 2-dimensional object sitting in a 3-dimensional Euclidean space,
because where we are on the sphere is completely described by specifying
the longitude and the latitude.

We can generalise this: an n-manifold is an n-dimensional space which
is locally ‘Euclidean’, or ‘flat’. Curves are l-manifolds, surfaces are
2-manifolds (see Fig. 1), and we can extend this to higher dimensions. For
example, we can easily construct the n-sphere which is the n-dimensional
analogue of the 2-sphere; although we can’t easily visuvalise it, it is by
construction an n-manifold. A manifold is closed if it has no boundary:
for example, the 2-sphere is closed whereas a disk (see Fig. 2) is not
because it has a circle as its boundary. An n-manifold may be embedded
into an m-Euclidean space (m greater than n), where we can study its
geomeltry extrinsically.

The reason for introducing this notion is that usually we view our universe
as a (3+1)-space consisting of three spatial dimensions and one time
dimension. The idea therefore is to model the spatial portion of the
universe as a 3-manifold. Once we have a model, we compare the
physical data obtained through observation against the theoretical model;
if a particular model is not consistent with the data, then it is very likely
that this model does not represent the spatial portion of the universe.
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Fig. 2: Some 2-manifolds with boundaries: the disk and the Mdbius strip. The 2-manifolds in Fig. 1 by

comparison are closed manifolds without boundaries.
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We have used associated the word ‘flat” with the Euclidean space.
However, a lot of things are not flat. We know that on a flat space, the
shortest way to travel between two points is via a straight line, but what
happens when the manifold we consider is not flat? This is where notions
of curvature and geodesics are important.

Curvature arises from the bending of manifolds, and we use it as a measure
of how much a manifold deviates from our flat Euclidean space which
has curvature zero. For example, the unit 2-sphere has curvature one (it
bends ‘positively’). Lines in Euclidean space become curves on a curved
manifold. Geodesics are then the corresponding objects to straight lines in
Euclidean space: the curve of minimum distance joining two points on a
manifold is a geodesic. We can visualise this by drawing a straight line on
a piece of paper and rolling it up into a cylinder. This now gives a curve
which is still distance minimising; depending on how you drew the line,
you will either get a straight line, part of a circle, or part of a helix, and
these are all geodesics on the cylinder.

Fig. 3: Geodesics on a sphere are portions of circles where the centre of the circle and
the centre of the sphere coincide; these are called great circles. This diagram shows
flight paths used in air travel and geodesics here are important because they reduce the
cost of air travel. (Image courtesy of J.P. Rodrigue, Hofstra University)

The idea of Riemann

So far geometry has been investigated from an outsider’s point of view,
in the sense that we take the manifold we are interested in, consider an
embedding into Euclidean space and study its geometry. Could we do
geometry from an intrinsic point of view rather than the extrinsic point of
view?

Fig. 4: Bernhard Riemann (1826 - 1866)

The mathematician Carl Friedrich Gauss certainly thought intrinsic
geometry was possible; it was he who showed that curvature was an
intrinsic property of a surface (i.e. a 2-manifold), independent of the
embedding. However, it was Gauss’ student Bernhard Riemann who first
gave a formal treatment of studying geometry intrinsically. Riemann
showed geometry is still consistent if we only have the manifold in
question and a way to measure distances on this manifold (the metric);
how it is embedded in Euclidean space does not affect its geometry.
Curvatures, geodesics and other geometric objects can then be recast into
the Riemannian formulation, and geometry may be studied from within.
This extra freedom makes the formulation more complicated to set up,
but it is essential for us; we can’t go outside the universe, so there is no
way we could study the universe extrinsically. Indeed, this is the approach
Einstein adopted when he formulated his theory of general relativity.

Other consistent geometries which behave quite differently to our standard
notion of Euclidean and spherical geometry have been constructed since.
One area of current research is that of hyperbolic geometry which
studies spaces with negative curvature; one example of such space is the
pseudosphere in Fig. 7. Sometimes called horn geometries, it is one of the
proposed models of the universe and data obtained currently does not rule
out the possibility of a hyperbolic universe.

Local vs. Global

Geometry is concerned with studying things locally. For example, when
studying the 2-torus in Fig. 1, we can find geodesics and its curvature, but
this does not tell us anything about the fact that it has a ‘hole’ in it; it is not
simply connected like the 2-sphere is, because the 2-sphere has no ‘holes’.
Topology studies global properties of the space. Topological invariants are
obtained as a result of this study, and these provide powerful classification
theorems which allows us to make deductions. Topology is sometimes
called rubber-sheet geometry: two manifolds are the ‘same’ if each can be
smoothly deformed into the other. We call two manifolds homeomorphic
if there is a smooth deformation (the homeomorphism) which preserves all
the topological invariants as we deform one manifold into the other.

Fig. 5: A coffee mug and a doughnut: these two objects are homeomorphic.
(Image by L.V. Barbosa)

For example, we can smoothly deform the shapes in Fig. 5 from one
into one another without tearing the shape, and these two objects can be
shown to be homeomorphic. In Fig. 1, the 2-torus and the 2-sphere are
hot homeomorphic, since there is no way we can deform one into another
without tearing the surface. Also, the genus (the number of ‘holes’) is not
preserved if we forcibly deform our 2-torus into the 2-sphere. The genus
is one of the topological invariants, and so we conclude the 2-torus and
the 2-sphere are fundamentally different. There are many classification
theorems arising from the study of topology, but perhaps the most famous
result of this century is the Poincaré conjecture.

The million dollar question

“Consider a connected 3-manifold without boundary and
finite in size. If every simple closed loop on this manifold
can be continuously shrunk down to a point, then this
manifold is homeomorphic to the 3-sphere.”

This is the Poincaré conjecture for a 3-manifold. We will briefly explain
this for the 2-manifold analogue:

Fiz. 6: Visualisation of Poincaré’s conjecture for the 2-sphere.

The 2-sphere has no holes, is finite in size and lacks a boundary, hence it
satisfies our imposed conditions. Every simply connected loop (loop with
no self-intersections) can be shrunk down to a point, and the 2-sphere is
clearly homeomorphic to itself. This is not true for the 2-torus, because if
we take the red loop as shown in Fig. 1, then this loop cannot be shrunk
down to a point.

This very intuitive classification theorem was first proposed by Henri
Poincaré around the turn of the twentieth century, and was selected by
the Clay Institute of Mathematics as one of the seven Millennium Prize
Questions, with one million US dollars attached to each prize. The
3-dimensional case was solved by Grigori Perelman and confirmed as a
proof only in 2006. It remains the only solved Millennium problem.

Apart from classification theorems, there are also local to global theorems
which gives us global results knowing something about the local geometry.
This also reduces some possibilities of the manifolds we need to consider.
One such is the Gauss-Bonnet theorem, which relates curvature to the
genus of the surface. The upshot is that we have powerful tools from
mathematics which help us study the geometry and topology of the
universe.
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Universe models and their
consequences

Current models of the universe are based around simply connected and
closed 3-manifolds which are spherical (positive curvature), Euclidean
(zero curvature) or hyperbolic (negative curvature). By comparing
physical data obtained through experiments and observations against the
classification theorems, we can see whether the data agree with the theories
and we can eliminate inconsistent models as appropriate. This allows us
to restrict the cases we need to consider.

Fig. 7: The unit pseudosphere. With the associated
metric in hyperbolic space, this object has curvature -1
away from its equator.

The shape of the universe has important implications: it is one of
the important factors that determines the ultimate fate of the universe.
Scientists believe that the universe is currently expanding; observation of
redshifts in electromagnetic radiation supports this. Theoretical studies
suggest that if the universe is spherical and there is enough mass in the
universe, then gravity will eventually reverse this expansion and the big
crunch will result (the universe shrinking down to a point). On the other
hand, if the universe is flat or hyperbolic, then this will not happen and
the universe will continue to expand, leading to either the big freeze (the
average energy density dropping to a point where life cannot be sustained)
or the big rip (the repulsive forces pushing the universe apart overcome
the forces binding molecules together and everything rips apart). The
geometry of the universe is clearly an important area that requires more
investigation!

Conclusion

Experimental results show that the universe is very nearly flat, and if there
is curvature, it is certainly very small. The two models currently favoured
by researchers are the Poincaré dodecahedral space for the spherical
case (generally known as soccer ball shaped) and the Picard horn for
the hyperbolic case (generally known as funnel shaped); the universe is
probably not flat. We have assumed here that the universe is a simply
connected 3-manifold without boundary in a (3+1)-space; this need not be
the case. There are other studies which investigate models with different
dimensions or topology and these give rise to some very curious physical
consequences. The shape of the universe is still very much an open
question.

The ancients believed the world was balanced on top of four elephants,
themselves balanced on top of a turtle. Although we can’t provide an
answer to our initial question, at least we can say the universe is extremely
unlikely to be balanced on top of a gigantic turtle. Interesting idea though.

Fig. 8: Turtle universe?
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